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Abstract

The following work indagates critical current degradation of Nb3Sn cables due
to transverse pressure. The experimental setup apparently gives very di�erent
values of degradation compared to actual magnet results. This work tries to
understand why it happens and to suggest some parameters that must be taken
into account in order to better reproduce with the experimental setup the real
stress condition of the magnet.

2



1 Introduction

The critical current of superconductive cables depends on many physical quanti-
ties such as temperature, magnetic �eld and stress. Stress dependence of critical
current has been investigated by several experiments, which basically consist in
applying a transverse pressure on a sample and measuring its critical current
degradation. After applying pressure, there are two kinds of critical current
degradation: a reversible one and a permanent one. Reversible degradation is
seen measuring degradation while applying pressure; permanent degradation is
seen measuring degradation after applying pressure, with no pressure applied
on the cable.

FermiLab has an experimental setup (Figure 1) used to evaluate reversible
and permanent degradation due to applied azimuthal pressure. It consists of a
plate (2) driven up by a rod assembly (3) wich presses a two impragnated and
insulated cables (1) sample with a pressure up to 200 MPa. This simulates an
up to 200 MPa azimuthal stress condition in the magnet. In order to prevent
current sharing, all the strands of the sample are made of copper except one
which is superconductive.

Figure 1: Experimental setup.

Both reversible and permanent degradation have been measured. Unfortu-
nately, compared to experimental data, magnets seem to withstand higher loads
without degradating (Figure 3).

Figure 2: Some of latest experimental results.
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Figure 3: Comparison between experimental results and magnet data; the latter
are plotted against maximum azimuthal stress reached during pre-load.

2 Comparison between experimental data and mag-

nets' behaviour

The transverse pressure applied on the cable wants to simulate a condition of
azimuthal stress on the magnet. Pre-loads on the magnet are applied both at
room temperature and after cooling down at 4.2 K, and the magnet is also
loaded when it is powered.

First af all, it must be noticed that critical current depends on magnetic
�eld (Figure 4); critical current degradation due to magnetic �eld is even more
intense than the one due to applied pressure. So we can assume that the lowest
critical current will be in the area in which there is the highest �eld.

Figure 4: Critical current degradation due to magnetic �eld.

As we can see in Figure 5, the highest �eld is located on the pole, so we
should be interested in the stress reached in that area of the magnet.

As we can see in Figure 6, when the magnet is powered, the pole is unloaded,
so there will not be any reversible degradation. During pre-load, azimuthal
stress on the pole is higher but the maximum value of azimuthal stress on the
magnet is still not there.

After these observations we compare experimental permanent degradation
with the stress reached on the pole and we see that some results seem to �t
better, but other are still far (Figure 7).

4



Figure 5: Field distribution on the magnet.

Figure 6: Stress distribution on the magnet: at room temperature, at 4.5 K and
when powered.

Figure 7: Experimental permanent degradation and magnet data; the latter are
plotted against maximum stress reached where stress is maximum.

3 ANSYS model of the section

In order to better understand the physics of the problem, a simple ANSYS
model of the section has been developed. Because of the high uncertainity
and non-reproducibility of the geometry of the cable and because of the fact
critical current (which is the quantity we want to study) is not evaluable, the
model has been created in order to be as simple and fast to run as possible,
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without any corrections that would make the simulation much slower (even if
probably more similar to the reality) without correcting signi�cantly the result.
That's why the model is bidimensional, every material is modelled as linear,
elastic and isotropic, there is no friction between strands (they are glued to
the epoxy) and mechanical and thermal properties of the material do not vary
with temperature. This model is wanted to be an indicator of the order of
magnitude of local stress in the cable and should be used to see qualitatively
how di�erents loading conditions can change local stress values and so, probably,
critical current. Section is shown in Figure 8.

Figure 8: Section modelled.

The model is bidimensional, so we need to evaluate the behaviour in axial
direction in order to choose the correct elements that better represent the phe-
nomenon. A plane stress model does not seem to be correct, because it allows
the material to deform in axial direction as much as it wants; this does not re-
spect the integrity of the material, because if the axial strain was not the same
all over the section, two adjacent section would compenetrate or separate. A
plane strain model does not seem to be correct either, because it forces the axial
strain to be zero, even if the sample is not axially constrained. A generalized
plane strain model forces the axial strain to be constant all over the section,
keeping the integrity of the material without forcing it not to deform in axial
direction. So generalized plane strain seems to be the best assumption.

In order to verify it, a simple ANSYS model of a compound material has
been performed. The model wants to represent an ortogonal section that allows
us to evaluate the axial behaviour of the sample. Figure 9 and Figure 10 show
that axial stress is not zero on the section (so plane stress is not correct), while
axial strain is constant (but not zero) all over the section, so a generalized plane
strain model seems to reproduce the sample in the best way.

Figure 9: Axial stress: it is not zero all over the section.

Figure 10: Axial strain: it is constant (but not zero) all over the section.
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4 E�ect of radial stress

In order to understand if the radial stress in the magnet can explain the dif-
ference between magnet and sample degradation, a constant compressive radial
stress on the cable has been simulated. Infact, the coupling of two compressive
stresses should bring smaller shear deformation than only one. Radial stress
has been simulated by applying on the lateral side of the sample a constant
pressure.

Figure 11: σθθ = 80 MPa, σrr = 0.

Von Mises stress in a sample loaded with an azimuthal stress σθθ = 80 MPa
and a radial stress σrr = 0 is plotted in Figure 11. We can see a local Von Mises
stress higher than 80 MPa (more than 130 MPa) in the strands. This is the
current situation in the experiment, in which is not possible to give a lateral
radial load to the sample.

FIGURA shows Von Mises stress for a σθθ = 80 MPa coupled with a σrr =
40 MPa. We can see in Figure 12 that local maximum Von Mises stress decreases
to less than 120 MPa, and it moves to the external part of the strand. This
situation is common in magnets, in which usually radial stress is around half of
the azimuthal stress.

The following situations have also been plotted:

• σθθ = 80 MPa, σrr = 80 MPa;

• σθθ = 40 MPa, σrr = 80 MPa;

• σθθ = 0 MPa, σrr = 80 MPa.

In order to complete the qualitative evaluation of the e�ect of radial stress,
a loop of simulation has been performed with all the possible couplings between
azimuthal stress and radial stress from 0 to 150 MPa every 10 MPa. Maximum
Von Mises stress has been plotted for each load in Figure 16 and Figure 17. As
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Figure 12: σθθ = 80 MPa, σrr = 40 MPa.

Figure 13: σθθ = 80 MPa, σrr = 80 MPa.

expected and as we have seen before, azimuthal stress being equal, an increasing
radial stress (lower than a trashold value) makes maximum Von Mises stress in
the strand decrease.
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Figure 14: σθθ = 40 MPa, σrr = 80 MPa.

Figure 15: σθθ = 0, σrr = 80 MPa.

5 E�ect of di�erent geometrical and material con-

�gurations

Geometry can change a lot from cable to cable and it is not easily reproducible
in a ANSYS model. Infact, strands are not circular and epoxy is not always
�lling the cable without voids; strands have some Nb3Sn wires composing an
exagon before being manufacted. After the plastic deformation occurred with
the manufacturing process, strand geometry changes a lot.
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Figure 16: σMAX(σθθ, σrr): 3D view.

Figure 17: σMAX(σθθ, σrr): top view.

Presence of voids in the epoxy matrix has been simulated as in Figure 18.
Comparing with Figure 11, it can be seen that maximum Von Mises stress in
the strand is higher.

More compact strands have been simulated as in Figure 19. In this case a
lower maximum Von Mises stress is reached. It is located on the external part
of one of the strands, and the central strands are very less stressed than the
strands of Figure 11.

Voids in compact strands have been simulated as in Figure 20. As in Fig-
ure 18, the presence of voids increases very much local stress.

From these �rst simulations, we can stand that geometry a�ects very much
local stress; so the numbers obtained in simulations should not be trusted in
too much, and simulations should be intended just to give a qualitative idea of
how di�erent loading conditions can a�ect local stress and so critical current
degradation.

In order to see if di�erences between magnets and experimental data can be
caused by the fact that experimental sample is made of copper strands instead
of superconductive strands, a simulation of a cable made with superconductive
strands is shown in Figure 21. Local values of stress does not change very
much, so we can state that it is correct to substitute superconductive strands
with copper ones.

Another di�erence between magnet azimuthal stress and the transverse pres-
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Figure 18: Voids in epoxy.

Figure 19: Compact strands.

sure on the sample is that the �rst is not always constant all over the cable, while
the latter is forced to be a constant value. Figure 22 and Figure 23 show that
if the cable is loaded with σθθ = 80 MPa just in a restricted area of the cable
(central in Figure 23 and external in Figure 22) local stress does not change very
much, so we can state that it is correct to reproduce a non-uniform azimuthal
stress in the magnet with an uniform transverse pressure on the sample.

As previously stated, to reproduce a radial stress in the magnet, a lateral
pressure should be applied to the sample. It will not be easy to apply this
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Figure 20: Compact strands with voids.

Figure 21: Nb3Sn strands.

pressure along the whole height of the cable, so it has been simulated a sample
partially loaded in Figure 24 (σθθ = 80 MPa, σθθ = 40 MPa). Compared to
Figure 12, we see that local stress does not change too much.

6 Thermal loads

A compound material subject to high variation of temperature forces the ma-
terials that compose it to expand or contract in the same way, and this induces
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Figure 22: External load.

Figure 23: Central load.

stress due to the fact that they have di�erent thermal expansion coe�cient.
The cable is a epoxy and copper compound; epoxy can't withstand the high

tensile stress that there wuold be, so it is going to crack and to follow the
deformation of the copper. So these kind of thermal load must not be taken
into account.

The strand is a copper and Nb3Sn compound and stress is plotted in Fig-
ure 25 (unloaded) and Figure 26 (σθθ = 80 MPa), considering a variation of
temperature from 293 K to 4.2 K. We can see that there is an intrinsic stress
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Figure 24: Partial radial load.

even if the cable is not pressed.

Figure 25: Stress after cooling down while unloaded.

In order to have a complete idea of the e�ect of radial and azimthal stress
on critical current degradation while considering thermal e�ects, a loop of sim-
ulation has been performed with all the possible couplings between azimuthal
stress and radial stress from 0 to 150 MPa every 10 MPa. For each load case, it
has been considered the maximum Von Mises stress reached in the area shown
in Figure 27, in order not to consider singularity zones (near the corners and
the central zone). Results are shown in Figure 28 and Figure 29.
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Figure 26: Stress after cooling down with σθθ = 80 MPa.

Figure 27: Considered area for maximum Von Mises plots.

Figure 28: σMAX(σθθ, σrr, 4.2 K): 3D view.
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Figure 29: σMAX(σθθ, σrr, 4.2 K): top view.

Under the hypothesis that critical currents depends on maximum Von Mises
stress and that a maximum Von Mises stress lower than the one reached at 4.2 K
without external load does not bring any degradation, a qualitative prevision of
critical current degradation is shown in Figure 31 and Figure 30.

Figure 30: Room temperature preload expected degradation.

Figure 31: Cold preload expected degradation.

A �t to experimental data has been made under the following hypothesis:

• Ic = kσMAX + q
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• Ic(σMAX(0, 0, 4.2K)) = 1

Among the curves shown in Figure 32, the one that �ts best is the RRP
85.0% PF. The best �t is shown in Figure 33.

Figure 32: RRP experimental results.

Figure 33: Best �t.

It must be underlined again that the prediction made with these results
should not be quantitave, but just qualitative. The fact that it is possible to
�t some experimental data, make it look more verosimile and encourages to
permorm di�erent kinds of experiments.

7 Conclusions and further developments

This work shows that thermal loads and radial stress a�ect local values of stress
in the strands, and so they are going probably to a�ect also critical current
degradation.

Di�erences between a warm preload and a cold preload should be taken into
account and experimental setup able to apply radial stress should be developed.
A lateral load can be given by forcing the cable in a seat, but small errors on
dimensions of seat or cable can bring loads higher or lower than expected. A
spring system can avoid this, but forces needed seem to be to high for the space
at our disposal.
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